Member Seminar
Speaker: Max Wiesner
Title: Light strings, strong coupling, and the Swampland
Abstract: In this talk, I will start by reviewing central ideas of the so-called Swampland Program. The Swampland Program aims to identify criteria that distinguish low-energy effective field theories, that can be consistently coupled to quantum gravity, from those theories that become inconsistent in the presence of quantum gravity.
In my talk I will specialize to four-dimensional effective field theories with N=2 and N=1 supersymmetry. In weakly-coupled regions of the scalar field space of such theories, it has been shown that light strings are crucial to realize certain Swampland criteria. Complementary to that, the focus of this talk will be on the role of such light strings away from these weak-coupling regimes. In this context, I will first discuss a relation between light perturbative strings and strong coupling singularities in the Kähler moduli space of 4d N=1 compactifications of F-theory. More precisely, in regions of moduli space, in which a critical string classically becomes light, I will show that non-perturbative corrections yield to strong coupling singularities for D7-brane gauge theories which obstruct weak-coupling limits. Moreover, I will demonstrate that in the vicinity of this strong coupling singularity, the critical, light string in fact leaves the spectrum of BPS strings thereby providing an explanation for the obstruction of the weak coupling limit.
I will then move on and discuss the backreaction of perturbative strings in 4d EFTs. Away from the string core, the backreaction of such strings necessarily leads to strong coupling regions where naively the energy stored in the backreaction diverges. I will show how the introduction of additional non-critical strings can regulate this backreaction and how this can be used to study the spectrum of BPS strings and their tensions even beyond weak coupling regions. In this context, I will demonstrate how the requirement, that the total string tension should not exceed the Planck scale, constrains the possible BPS string charges.