• Hypergraph decompositions and their applications

    Speaker: Peter Keevash, Oxford Title: Hypergraph decompositions and their applications Abstract: Many combinatorial objects can be thought of as a hypergraph decomposition, i.e. a partition of (the edge set of) one hypergraph into (the edge sets of) copies of some other hypergraphs. For example, a Steiner Triple System is equivalent to a decomposition of a complete graph […]

  • Higher rank DT theory from rank 1

    Abstract: Fix a Calabi-Yau 3-fold X. Its DT invariants count stable bundles and sheaves on X. The generalised DT invariants of Joyce-Song count semistable bundles and sheaves on X. I will describe work with Soheyla Feyzbakhsh showing these generalised DT invariants in any rank r can be written in terms of rank 1 invariants. By the […]

  • Sharp decay for Teukolsky equation in Kerr spacetimes

    Abstract: Teukolsky equation in Kerr spacetimes governs the dynamics of the spin $s$ components, $s=0, \pm 1, \pm 2$ corresponding to the scalar field, the Maxwell field, and the linearized gravity, respectively. I will discuss recent joint work with L. Zhang on proving the precise asymptotic profiles for these spin $s$ components in Schwarzschild and […]

  • Nonreciprocal matter: living chiral crystals

    Abstract: Active crystals are highly ordered structures that emerge from the nonequilibrium self-organization of motile objects, and have been widely studied in synthetic and bacterial active matter. In this talk, I will describe how swimming sea star embryos spontaneously assemble into chiral crystals that span thousands of spinning organisms and persist for tens of hours. Combining […]

  • 11/11/21 Interdisciplinary Science Seminar

    Title: The Kervaire conjecture and the minimal complexity of surfaces Abstract: We use topological methods to solve special cases of a fundamental problem in group theory, the Kervaire conjecture. The conjecture asserts that, for any nontrivial group G and any element w in the free product G*Z, the quotient (G*Z)/<<w>> is still nontrivial. We interpret this […]

  • Universal relations between entanglement, symmetries, and entropy

    Member Seminar Speaker: Gabriel Wong  Title: Universal relations between entanglement, symmetries, and entropy Abstract: Entanglement is an essential property of quantum systems that distinguishes them from classical ones.   It is responsible for the nonlocal character of quantum information and provides a resource for quantum teleportation and quantum computation. In this talk I will provide an introduction […]

  • 11/15/2021 – Swampland Seminar

    This week’s seminar will be an open mic discussion which will be led by Nima Arkani-Hamed (IAS), and by Gary Shiu (UW-Madison), and the topic will be “Swampland constraints, Unitarity and Causality”. They will start with a brief introduction sharing their thoughts about the topic and moderate a discussion afterwards.

  • Gromov-Witten theory of complete intersections

    Abstract: I will describe an inductive algorithm computing Gromov-Witten invariants in all genera with arbitrary insertions of all smooth complete intersections in projective space. The main idea is to show that invariants with insertions of primitive cohomology classes are controlled by their monodromy and by invariants defined without primitive insertions but with imposed nodes in the […]

  • Quantum Geometric Aspects of Chiral Twisted Graphene Models

    Virtual

    Speaker: Jie Wang (Simons Foundation) Title: Quantum Geometric Aspects of Chiral Twisted Graphene Models Abstract: “Moire” materials produced by stacking monolayers with small relative twist angles are of intense current interest for the range of correlated electron phenomena they exhibit. The quench of the kinetic energy means that the interacting physics is controlled by the interplay between […]