• 2/3/2022 – Interdisciplinary Science Seminar

    Title:Quasiperiodic prints from triply periodic blocks Abstract: Slice a triply periodic wooden sculpture along an irrational plane. If you ink the cut surface and press it against a page, the pattern you print will be quasiperiodic. Patterns like these help physicists see how metals conduct electricity in strong magnetic fields. I’ll show you some block prints […]

  • Survey on stability of the positive mass theorem

    Member Seminar Speaker: Dan Lee Title: Survey on stability of the positive mass theorem Abstract: The Riemannian positive mass theorem states that a complete asymptotically flat manifold with nonnegative scalar curvature must have nonnegative ADM mass. This inequality comes with a rigidity statement that says that if the mass is zero, then the manifold must be Euclidean […]

  • Holomorphic CFTs and topological modular forms

    Abstract: The theory of topological modular forms leads to many interesting constraints and predictions for two-dimensional quantum field theories, and some of them might have interesting implications for the swampland program. In this talk, I will show that a conjecture by Segal, Stolz and Teichner requires the constant term of the partition function of a bosonic holomorphic […]

  • Invariant theory for maximum likelihood estimation

    Abstract:  I will talk about work to uncover connections between invariant theory and maximum likelihood estimation. I will describe how norm minimization over a torus orbit is equivalent to maximum likelihood estimation in log-linear models. We will see the role played by polytopes and discuss connections to scaling algorithms. Based on joint work with Carlos […]

  • SYZ Conjecture beyond Mirror Symmetry

    Virtual

    Abstract: Strominger-Yau-Zaslow conjecture is one of the guiding principles in mirror symmetry, which not only predicts the geometric structures of Calabi-Yau manifolds but also provides a recipe for mirror construction. Besides mirror symmetry, the SYZ conjecture itself is the holy grail in geometrical analysis and closely related to the behavior of the Ricci-flat metrics. In this talk, […]

  • CMSA Colloquium

    During the 2021–22 academic year, the CMSA will be hosting a Colloquium, organized by Du Pei, Changji Xu, and Michael Simkin. It will take place on Wednesdays at 9:30am – 10:30am (Boston time). The meetings will take place virtually on Zoom. All CMSA postdocs/members are required to attend the weekly CMSA Members’ Seminars, as well as the weekly CMSA […]

  • Tetrahedron instantons and M-theory indices

    Virtual

    Colloquium Speaker: Wenbin Yan (Tsinghua University) Title: Tetrahedron instantons and M-theory indices Abstract: We introduce and study tetrahedron instantons. Physically they capture instantons on $\mathbb{C}^{3}$ in the presence of the most general intersecting codimension-two supersymmetric defects. In this talk, we will review instanton moduli spaces, explain the construction, moduli space and partition functions of tetrahedron instantons. We […]

  • Geodesics and minimal surfaces

    Abstract: There are several properties of closed geodesics which are proven using its Hamiltonian formulation, which has no analogue for minimal surfaces. I will talk about some recent progress in proving some of these properties for minimal surfaces.

  • Toward Demystifying Transformers and Attention

    Virtual

    https://youtu.be/MSw8HV0eHo8 Speaker: Ben Edelman, Harvard Computer Science Title: Toward Demystifying Transformers and Attention Abstract: Over the past several years, attention mechanisms (primarily in the form of the Transformer architecture) have revolutionized deep learning, leading to advances in natural language processing, computer vision, code synthesis, protein structure prediction, and beyond. Attention has a remarkable ability to enable the […]

  • On the absence of global anomalies of heterotic string theories

    Virtual

    Speaker: Yuji Tachikawa (Kavli IPMU, U Tokyo) Title: On the absence of global anomalies of heterotic string theories Abstract: Superstring theory as we know it started from the discovery by Green and Schwarz in 1984 that the perturbative anomalies of heterotic strings miraculously cancel. But the cancellation of global anomalies of heterotic strings remained an open […]

  • Dihedral ridigity and mass

    Abstract: To characterise scalar curvature, Gromov proposed the dihedral rigidity conjecture which states that a positively curved polyhedron having dihedral angles less than those of a corresponding flat polyhedron should be isometric to a flat one. In this talk, we will discuss some recent progress on this conjecture and its connection with general relativity (ADM mass […]

  • The global structure of the Standard Model and new nonperturbative processes

    Virtual

    Speaker: Mohamed Anber (Durham University) Title: The global structure of the Standard Model and new nonperturbative processes Abstract: It is well-established that the Standard Model (SM) of particle physics is based on su(3)Xsu(2)Xu(1) Lie-algebra. What is less appreciated, however, is that SM accommodates a Z_6 1-form global symmetry.  Gauging this symmetry, or a subgroup of it, changes […]