During the 2021–2022 academic year, the CMSA will host a program on the so-called “Swampland.” The Swampland program aims to determine which low-energy effective field theories are consistent with nonperturbative quantum gravity considerations. Not everything is possible in String Theory, and finding out what is and what is not strongly constrains the low energy physics. These constraints are naturally […]
Calendar of Events
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
Sunday
|
|---|---|---|---|---|---|---|
|
4 events,
During the 2021–22 academic year, the CMSA will be hosting a Colloquium, organized by Du Pei, Changji Xu, and Michael Simkin. It will take place on Wednesdays at 9:30am – 10:30am (Boston time). The meetings will take place virtually on Zoom. All CMSA postdocs/members are required to attend the weekly CMSA Members’ Seminars, as well as the weekly CMSA […]
During the Spring 2022 semester, the CMSA hosted a program on General Relativity. This semester-long program included four minicourses, a conference, and a workshop. General Relativity Mincourses: March–May, 2022 General Relativity Conference: April 4–8, 2022 General Relativity Workshop: May 2–5, 2022 Program Visitors Dan Lee, CMSA/CUNY, 1/24/22 – 5/20/22 Stefan Czimek, Brown, 2/27/22 – […] |
6 events,
Minicourses General Relativity Program Minicourses During the Spring 2022 semester, the CMSA hosted a program on General Relativity. This semester-long program included four minicourses running in March, April, and May; a conference April 4–8, 2022; and a workshop from May 2–5, 2022. Schedule Speaker Title Abstract March 1 – 3, 2022 10:00 am – […]
-
Abstract: Eugene Wachspress introduced polypols as real bounded semialgebraic sets in the plane that generalize polygons. He aimed to generalize barycentric coordinates from triangles to arbitrary polygons and further to polypols. For this, he defined the adjoint curve of a rational polypol. In the study of scattering amplitudes in physics, positive geometries are real semialgebraic […]
-
Abstract: This is a report about work in progress with: Adeel Khan, Aloysha Latyntsev, Hyeonjun Park and Charanya Ravi. We will describe a virtual Atiyah-Bott formula for Artin stacks. In the Deligne-Mumford case our methods allow us to remove the global resolution hypothesis for the virtual normal bundle. |
8 events,
-
Speaker: Richard Kenyon (Yale) Title: Dimers and webs Abstract: We consider SL_n-local systems on graphs on surfaces and show how the associated Kasteleyn matrix can be used to compute probabilities of various topological events involving the overlay of n independent dimer covers (or “n-webs”). This is joint work with Dan Douglas and Haolin Shi.
-
Abstract: The SYZ proposal suggests that mirror symmetry is T-duality. It is a folklore that locally free sheaves are mirror to a Lagrangian multi-section of the SYZ fibration. In this talk, I will introduce the notion of tropical Lagrangian multi-sections and discuss how to obtain from such object to a class of locally free sheaves on the log Calabi-Yau spaces that Gross-Siebert have considered. I will also discuss a joint work […]
-
Abstract: We construct infinitely many new exactly solvable local commuting projector lattice Hamiltonian models for general bosonic beyond group cohomology invertible topological phases of order two and four in any spacetime dimensions, whose boundaries are characterized by gravitational anomalies. Examples include the beyond group cohomology invertible phase “w2w3” in (4+1)D that has an anomalous boundary topological […] |
6 events,
-
Abstract: In this talk we will discuss the interaction between magnetic monopoles and massless fermions. In the 1980’s Callan and Rubakov showed that in the simplest example and that fermion-monopole interactions catalyze proton decay in GUT completions of the standard model. Here we will explain how fermions in general representations interact with general spherically symmetric monopoles […]
-
Abstract: While over-parameterization is widely believed to be crucial for the success of optimization for the neural networks, most existing theories on over-parameterization do not fully explain the reason — they either work in the Neural Tangent Kernel regime where neurons don’t move much, or require an enormous number of neurons. In this talk I will […] |
5 events,
-
Member Seminar Speaker: Martin Lesourd Title: Positive Mass, Density, and Scalar Curvature on Noncompact Manifolds Abstract: I’ll describe some recent work spanning a couple of different papers on the topics mentioned in the title: Positive Mass, Density, and Scalar Curvature on Noncompact Manifolds. Two of these are with R. Unger, Prof. S-T. Yau, and two others are with R. Unger, […] |
||
|
5 events,
-
Speakers: Fernando Marchesano (UAM-CSIC, Madrid) and Max Wiesner (Harvard CMSA) Title: 4d strings at strong coupling As usual, the format will be 45 min talk + 30 min discussion, to encourage participation from the audience. Looking forward to seeing you there! |
5 events,
-
Abstract: The random greedy algorithm for finding a maximal independent set in a graph has been studied extensively in various settings in combinatorics, probability, computer science, and chemistry. The algorithm builds a maximal independent set by inspecting the graph’s vertices one at a time according to a random order, adding the current vertex to the independent […] |
7 events,
-
Abstract: The low dimensional manifold hypothesis posits that the data found in many applications, such as those involving natural images, lie (approximately) on low dimensional manifolds embedded in a high dimensional Euclidean space. In this setting, a typical neural network defines a function that takes a finite number of vectors in the embedding space as input. However, one often […]
-
Abstract: Motivated by a puzzle arising from recent work on staggered lattice fermions we introduce Kaehler-Dirac fermions and describe their connection both to Dirac fermions and staggered fermions. We show that they suffer from a gravitational anomaly that breaks a chiral U(1) symmetry specific to Kaehler-Dirac fermions down to Z_4 in any even dimension. In odd dimensions […]
https://youtu.be/QaOZCa8SFvA Speaker: Iddo Drori, MIT EE&CS and Columbia School of Engineering Title: Machine Learning 30 STEM Courses in 12 Departments Abstract: We automatically solve, explain, and generate university-level course problems from thirty STEM courses (at MIT, Harvard, and Columbia) for the first time. We curate a new dataset of course questions and answers across a dozen […] |
7 events,
-
Abstract: We consider the Cauchy problem for the Einstein equations for cosmological spacetimes, i.e. spacetimes with compact spatial hypersurfaces. Various classes of those dynamical spacetimes have been constructed and analyzed using CMC foliations or equivalently the CMC-Einstein flow. We will briefly review the Andersson-Moncrief stability result of negative Einstein metrics under the vacuum Einstein flow and […]
-
Abstract: The gig economy provides workers with the benefits of autonomy and flexibility, but it does so at the expense of work identity and co-worker bonds. Among the many reasons why gig workers leave their platforms, an unexplored aspect is the organization identity. In a series of studies, we develop a team formation and inter-team contest […]
-
https://youtu.be/nnczlM1xhy4 Abstract: We present computations of the thermal Hall coefficient of phonons scattering off defects with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon-defect coupling is of the 'side-jump' type, which is proportional to the phonon lifetime. This contribution is at resonance […] |
|||
|
7 events,
-
Abstract: I will first review the construction of the moduli space of tropical curves (or metric graphs), and its relation to graph complexes. The graph Laplacian may be interpreted as a tropical version of the classical Torelli map and its determinant is the Kirchhoff graph polynomial (also called 1st Symanzik), which is one of the two […]
-
Abstract: It is by now well-known that mirror symmetry may be expressed as an equivalence between categories associated to dual Kahler manifolds. Following a proposal of Teleman, we inaugurate a program to understand 3d mirror symmetry as an equivalence between 2-categories associated to dual holomorphic symplectic stacks. We consider here the abelian case, where our theorem […]
-
Abstract: Billiards on an elliptical billiard table are completely integrable: phase space is foliated by invariant submanifolds for the billiard flow. Birkhoff conjectured that ellipses are the only plane domains with integrable billiards. Avila-deSimoi- Kaloshin proved the conjecture for ellipses of sufficiently small eccentricity. Kaloshin-Sorrentino proved local results for all eccentricities. On the quantum level, the analogous […] |
5 events,
-
Abstract: Some recent work in the quantum gravity literature has considered what happens when the amplitudes of a TQFT are summed over the bordisms between fixed in-going and out-going boundaries. We will comment on these constructions. The total amplitude, that takes into account all in-going and out-going boundaries can be presented in a curious factorized form. […] |
6 events,
-
https://youtu.be/9Mq9Jvmo3ic Abstract: The Swampland program aims at uncovering the universal implications of quantum gravity at low-energy physics. I will review the basic ideas of the Swampland program, formal and phenomenological implications, and provide a survey of the techniques commonly used in Swampland research including tools from quantum information, holography, supersymmetry, and string theory.
-
Abstract: Deep neural networks have achieved significant empirical success in many fields, including the fields of computer vision and natural language processing. Along with its empirical success, deep learning has been theoretically shown to be attractive in terms of its expressive power. However, the theory of expressive power does not ensure that we can efficiently find an optimal solution in […] |
5 events,
-
Member Seminar Speaker: Yingying Wu Title: Moduli Space of Metric SUSY Graphs Abstract: SUSY curves are algebraic curves with additional supersymmetric or supergeometric structures. In this talk, I will present the construction of dual graphs of SUSY curves with Neveu–Schwarz and Ramond punctures. Then, I will introduce the concept of the metrized SUSY graph and […] |
|||
|
6 events,
-
Open Mic Discussion Topic: Entropy bounds (species bound, Bekenstein bound, CKN bound, and the like)
-
Abstract: The AdS/CFT conjecture in physics posits the existence of a correspondence between gravitational theories in asymptotically Anti-de Sitter (aAdS) spacetimes and field theories on their conformal boundary. In this presentation, we prove rigorous mathematical statements toward this conjecture. In particular, we show there is a one-to-one correspondence between aAdS solutions of the Einstein-vacuum equations and a suitable space of data on […] |
5 events,
-
Abstract: We introduce a class of random graph processes, which we call \emph{flip processes}. Each such process is given by a \emph{rule} which is just a function $\mathcal{R}:\mathcal{H}_k\rightarrow \mathcal{H}_k$ from all labelled $k$-vertex graphs into itself ($k$ is fixed). The process starts with a given $n$-vertex graph $G_0$. In each step, the graph $G_i$ is obtained […] |
7 events,
-
Speaker: Joel E. Cohen (Rockefeller University and Columbia University) Title: Fluctuation scaling or Taylor’s law of heavy-tailed data, illustrated by U.S. COVID-19 cases and deaths Abstract: Over the last century, ecologists, statisticians, physicists, financial quants, and other scientists discovered that, in many examples, the sample variance approximates a power of the sample mean of each of a set […]
-
Youtube Video Abstract: I will show that a quantum state in a lattice spin (boson) system must be long-range entangled if it has non-zero lattice momentum, i.e. if it is an eigenstate of the translation symmetry with eigenvalue not equal to 1. Equivalently, any state that can be connected with a non-zero momentum state through […]
-
https://youtu.be/4zINaGrPc9M Speaker: Stanislas Polu, OpenAI Title: Formal Mathematics Statement Curriculum Learning Abstract: We explore the use of expert iteration in the context of language modeling applied to formal mathematics. We show that at same compute budget, expert iteration, by which we mean proof search interleaved with learning, dramatically outperforms proof search only. We also observe that […] |
8 events,
-
Abstract: I will talk about my work on the compressible Euler equations. We prove the local-in-time existence the solution of the compressible Euler equations in $3$-D, for the Cauchy data of the velocity, density and vorticity $(v,\varrho, \omega) \in H^s\times H^s\times H^{s’}$, $2<s'<s$. The result extends the sharp result of Smith-Tataru and Wang, established in the irrotational […]
-
Edge physics at the deconfined transition between a quantum spin Hall insulator and a superconductor
Edge physics at the deconfined transition between a quantum spin Hall insulator and a superconductor
Youtube Video Abstract: I will talk about the edge physics of the deconfined quantum phase transition (DQCP) between a spontaneous quantum spin Hall (QSH) insulator and a spin-singlet superconductor (SC). Although the bulk of this transition is in the same universality class as the paradigmatic deconfined Neel to valence-bond-solid transition, the boundary physics has a […]
-
Abstract: The developmental cycle of Myxococcus xanthus involves the coordination of many hundreds of thousands of cells aggregating to form mounds known as fruiting bodies. This aggregation process begins with the sequential formation of more and more cell layers. Using three-dimensional confocal imaging we study this layer formation process by observing the formation of holes […] |
5 events,
-
Member Seminar Speaker: Tsung-Ju Lee Title: Periods for singular CY families and Riemann–Hilbert correspondence Abstract: A GKZ system, introduced by Gelfand, Kapranov, and Zelevinsky, is a system of partial differential equations generalizing the hypergeometric structure studied by Euler and Gauss. The solutions to GKZ systems have been found applications in various branches of mathematics including number theory, algebraic geometry and […] |
||
|
6 events,
-
Abstract: A proposal to use the renormalisation group to address moduli stabilisation in IIB string perturbation theory will be described. We revisit brane-antibrane inflation combining this proposal with non-linearly realised supersymmetry.
-
Abstract: According to general relativity, the remnant of a binary black hole merger should be a perturbed Kerr black hole. Perturbed Kerr black holes emit “ringdown” radiation which is well described by a superposition of quasinormal modes, with frequencies and damping times that depend only on the mass and spin of the remnant. Therefore the observation […] |
5 events,
-
During the 2021–22 academic year, the CMSA will be hosting a seminar on Combinatorics, Physics and Probability, organized by Matteo Parisi and Michael Simkin. This seminar will take place on Tuesdays at 9:00 am – 10:00 am (Boston time). The meetings will take place virtually on Zoom. To learn how to attend, please fill out this form, or contact […] |
8 events,
-
Speaker: Rob Leigh, UIUC Title: Edge Modes and Gravity Abstract: In this talk I first review some of the many appearances of localized degrees of freedom — edge modes — in a variety of physical systems. Edge modes are implicated for example in quantum entanglement and in various topological and holographic dualities. I then review recent […]
-
Abstract: We present an effective quantization theory for chiral deformation of two-dimensional conformal field theories. We explain a connection between the quantum master equation and the chiral homology for vertex operator algebras. As an application, we construct correlation functions of the curved beta-gamma/b-c system and establish a coupled equation relating to chiral homology groups of chiral […]
-
Youtube Video Abstract: We show that Polchinski’s equation for exact renormalization group flow is equivalent to the optimal transport gradient flow of a field-theoretic relative entropy. This gives a surprising information-theoretic formulation of the exact renormalization group, expressed in the language of optimal transport. We will provide reviews of both the exact renormalization group, as well as the theory of optimal transportation. Our […] |
5 events,
-
Abstract: Matroids are combinatorial abstractions of vector spaces embedded in a coordinate space. Many fundamental questions have been open for these classical objects. We highlight some recent progress that arise from the interaction between matroid theory and algebraic geometry. Key objects involve compactifications of embedded vector spaces, and an exceptional Hirzebruch-Riemann-Roch isomorphism between the K-ring of vector […] |
5 events,
-
Member Seminar Speaker: Farzan Vafa Title: Diffusive growth sourced by topological defects Abstract: In this talk, we develop a minimal model of morphogenesis of a surface where the dynamics of the intrinsic geometry is diffusive growth sourced by topological defects. We show that a positive (negative) defect can dynamically generate a cone (hyperbolic cone). We […] |